COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS BOLYAI 52. COMBINATORICS, EGER (HUNGARY), 1987

On a Generalization of Magic Graphs

L. ŠÁNDOROVÁ and M. TRENKLER

1. Introduction and definitions

We shall consider a non-directed finite graph G = [V(G), E(G)] without loops and multiple edges and isolated vertices. Let v_1, v_2, \ldots, v_n be its vertices and let to each v_i be associated a real number $\rho(v_i)$. If there exists a mapping f from the set of edges E(G) into the real numbers such that

- (i) f(e) > 0 for all $e \in E(G)$,
- (ii) $f(e_i) \neq f(e_j)$ for all $e_i \neq e_j$; $e_i, e_j \in E(G)$,
- (iii) $\sum_{e \in E(G)} \eta(v_i, e) \cdot f(e) = \rho(v_i)$ for i = 1, 2, ..., n, where

$$\eta(v_i,e) = \left\{ egin{array}{ll} 1 & ext{when the vertex } v_i ext{ and the edge } e \ & ext{are incident,} \ 0 & ext{in the opposite case,} \end{array}
ight.$$

then the graph G is called ρ -magic. The mapping f which satisfies the condition (iii) is called a ρ -labelling of G with the indexing vector $\rho = (\rho(v_1), \rho(v_2), \ldots, \rho(v_n))$. If f is a ρ -labelling such that f(e) > 0 or $f(e) \ge 0$ for all edges of E(G), then it is called a ρ -positive or ρ -nonnegative labelling, respectively. We say that a graph G is ρ -positive or ρ -nonnegative if there exists a ρ -positive or a ρ -nonnegative labelling of its edges.

The special case of ρ -magic graph is the magic graph defined by J. SEDLÁČEK [7] as a graph with a labelling of the edges by positive numbers such that distinct edges have distinct labels and the sum of labels of edges incident to a particular vertex is the same for all vertices. The structure of graphs that admit such a

labelling has been investigated from several viewpoints. J. MÜHLBACHER [6], J. SEDLÁČEK [8], B. M. STEWART [9] and M. TRENKLER [11] established some sufficient conditions insuring that a graph is magic. A characterization of regular magic graphs in terms of even circuits was given by M. DOOB [2]. Two different characterizations of magic graphs are given in R. H. JEURISSEN [4], and in S. JEZNÝ, M. TRENKLER [5]. The motivation for the study of ρ -magic graphs is given in [3] of M. DOOB.

We note that the particular case of a ρ -positive graph, if ρ is a stationary vector, has been called in [1] a regularisable graph.

First we shall formulate several necessary definitions.

Under a generalized even circuit D we understand an even circuit C or two odd circuits C_1 and C_2 with one common vertex or two odd circuits C_1 and C_2 without common vertices joined by a path P. A spanning subgraph F of the graph G is called an X-factor of G if none of its components has a generalized even circuit. If an X-factor of G is a ρ -positive graph then each of its edges has unambiguous value. We say that a ρ -positive X-factor F of a ρ -positive graph G separates its edges e_1 and e_2 if at least one of them belongs to F and $f(e_1) \neq f(e_2)$, for some ρ -labelling f of G. As usual $\Gamma(S)$ denotes the vertices adjacent to at least one vertex of S.

2. ρ -positive graphs

In this part we state some results about ρ -positive graphs which we shall use to prove our main result.

Theorem 1. The following three conditions are equivalent:

- a) A graph G is ρ -positive;
- b) Every edge of G belongs to a ρ -positive X-factor;
- c) Each connected component G^* of G satisfies: If G^* is non-bipartite, then

$$\sum_{v_i \in S} \rho(v_i) < \sum_{v_j \in \Gamma(S)} \rho(v_j) \text{ for all stable } S \neq \emptyset$$

and if G^* is a bipartite graph with the partition V_1 and V_2 of the vertex set $V(G^*)$, then

$$\sum_{v_i \in V_1} \rho(v_i) = \sum_{v_j \in V_2} \rho(v_j)$$

and

$$\sum_{v_i \in S} \rho(v_i) < \sum_{v_j \in \Gamma(S)} \rho(v_j) \text{ for all stable } S \neq V_1, V_2, \emptyset.$$

Proof. The equivalence of a) and c) is proved in [10] and the equivalence of a) and b) follows from the following Lemmas of this part.

Lemma 1. If f_1 and f_2 are two ρ -nonnegative labellings of G and α, β two real numbers such that

$$\frac{\alpha}{\beta} \geq \max\{-\frac{f_2(e)}{f_1(e)}: e \in E(G), f_1(e) > 0\}$$

and $\alpha + \beta = 1$ and $\beta > 0$, then $\alpha f_1 + \beta f_2$ is a ρ -nonnegative labelling of G.

The proof is obvious.

Lemma 2. Let a ρ -positive graph G contain a generalized even circuit D as a subgraph. Then there exists a ρ -positive spanning subgraph of G which does not contain all edges of D.

Proof. We consider two cases.

Let D be an even circuit of length s and let f be a ρ -labelling of G and let $m = \min\{f(e) : e \in E(D)\}$. We denote the edges of D by $e_1, e_2, e_3, \ldots, e_s$ in such a way that $f(e_1) = m$. We define a new ρ -labelling h of G:

$$h(e_{2i-1}) = f(e_{2i-1}) - m,$$

 $h(e_{2i}) = f(e_{2i}) + m, \text{ for } i = 1, 2, \dots, \frac{s}{2},$
 $h(e) = f(e), \text{ for all } e \notin E(D).$

By omitting all edges with h(e) = 0 from G we obtain a ρ -positive factor F of G which does not contain all edges of the even circuit D.

Let D consist of two circuits C_1 , C_2 and a path P or only of two circuits C_1 and C_2 , respectively. Let f be a ρ -positive labelling of G and let $m = \min\{m_1, m_2\}$, where

$$m_1 = \min\{f(e) : e \in E(C_1) \cup E(C_2)\}$$
 and $m_2 = \frac{1}{2}\min\{f(e) : e \in E(P)\}.$

We suppose that e' is an edge of D such that f(e') = m, if $m = m_1$, or f(e') = 2m, if $m = m_2$, respectively. We define an auxiliary labelling q in this way: the edges of C_1 and C_2 have alternating values 1 and -1 and the edges of P have the values 2 and -2 such that the sum of each vertex is zero, and the value of the edge e' is negative, and all other edges of P have value 0. We consider a new P-labelling

$$h(e) = f(e) + m \cdot q(e)$$
 for all $e \in E(G)$.

At least one edge e' of the generalized even circuit has value 0 in h. The edges of G having positive value form a ρ -positive spanning subgraph F of G.

Repeatedly using the construction from the proof of Lemma 2 for generalized even circuits we obtain:

Corollary 1. If G is a ρ -positive graph, then there exists a ρ -positive X-factor F of G.

Lemma 3. If G is a ρ -positive graph then every edge e' of G is contained in a ρ -positive X-factor.

Proof. Let e' be an arbitrary edge of G and let F be some ρ -positive X-factor. If $e' \in E(F)$, then we have nothing to prove; hence suppose that $e' \notin E(F)$. Let f_1 and f_2 be a ρ -positive labelling of G or of the X-factor F, respectively. Using the labelling f_2 we define a ρ -nonnegative labelling f'_2 of G in the following way: $f'_2(e) = f_2(e)$ for all $e \in E(F)$ and $f'_2(e) = 0$ for all other edges of E(G).

If $\frac{\alpha}{\beta} = \max\{-\frac{f_1(e)}{f_2(e)}: e \in E(F)\}$ and $\alpha + \beta = 1$, then the labelling $f'' = \alpha f_1 + \beta f_2'$ is a ρ -nonnegative labelling of G and at least one edge of F has value 0. All edges with f''(e) > 0 form a ρ -positive spanning subgraph H of G. Let F' be an X-factor of H. If $e' \in E(F')$ then F' is a ρ -positive X-factor of G which contains the edge e' and in the opposite case we repeat the construction described above, since the number of positive edges decreases in every step. By a finite number of repetitions we obtain a ρ -positive X-factor of G which contains the edge e'.

Lemma 4. If every edge of G belongs to a ρ -positive X-factor, then G is ρ -positive.

Proof. Let F_1, F_2, \ldots, F_k be a set of ρ -positive X-factors of G with the ρ -labellings f_1, f_2, \ldots, f_k such that every edge of E(G) belongs to at least one of them. The labelling

$$f = \sum_{i=1}^{k} \frac{1}{k} f_i \text{ is a } \rho \text{-positive labelling of } G.$$

3. Characterization of ρ -magic graph

Lemma 5. If f_1 and f_2 are two distinct ρ -positive labellings of G such that $f_1(e_1) = f_2(e_2)$ holds for two different edges e_1 and e_2 , then there exists a ρ -positive labelling f such that $f(e_1) \neq f(e_2)$.

Proof. We choose two positive numbers α and β such that their sum is 1 and

$$\alpha \cdot \min\{f_1(e) : e \in E(G)\} > \beta \cdot \max\{f_2(e) : e \in E(G)\}.$$

The new labelling $f = \alpha f_1 + \beta f_2$ satisfies the condition of Lemma 5. (Note that if two different edges e_1 and e_2 satisfy $f_1(e_1) \neq f_1(e_2)$ or $f_2(e_1) \neq f_2(e_2)$, then $f(e_1) \neq f(e_2)$.)

Lemma 6. If e_1 and e_2 are two edges of a ρ -magic graph G, then they are separated by a ρ -positive X-factor.

Proof. Let f_1 be a ρ -positive labelling of G that satisfies (i), (ii) and (iii), and let F be an X-factor with a ρ -labelling f_2 . If F separates the edges e_1 and e_2 , then the proof is finished. We must consider only the opposite case. As in the proof of Lemma 3, the labelling of F introduces a ρ -nonnegative labelling f'_2 of G. If F does not separate the edges e_1 and e_2 , we choose α and β such that $f = \alpha f_1 + \beta f'_2$ be a labelling of G and there exists at least one edge for which f(e) = 0. By (ii), $f(e_1) \neq f(e_2)$. Let G' be a ρ -positive factor of g forming by all edges with f(e) > 0.

By a finite number of repetitions of the described step of construction we obtain a ρ -positive X-factor separating the edges e_1 and e_2 .

The previous Lemmas yield the proof of our main result.

Theorem 2. A graph G is ρ -magic if and only if G is ρ -positive and every couple of edges e_1, e_2 is separated by a ρ -positive X-factor.

Note. For the choise of a ρ -positive labelling of G the following lemma may be found useful.

Lemma 7. The edge e of a ρ -positive graph G has unambiguous value if and only if e does not belong to a generalized even circuit.

Proof. Let e be an edge of generalized even circuit. We can change its value by an analogous way as in the proof of Lemma 2, when we replace the number m by m' such that 0 < m' < m. The edge e that does not belong to a generalized even circuit is precisely a bridge connecting some subgraph G_1 to a connected bipartite subgraph G_2 with the partition V_1 and V_2 of the vertex set $V(G_2)$, or an edge added to a connected bipartite subgraph G_3 with the partition V_3 and V_4 of the vertex set $V(G_3)$, respectively. In the first case

$$f(e) = \big| \sum_{v_i \in V_1} \rho(v_i) - \sum_{v_j \in V_2} \rho(v_j) \big|$$

and in the second case

$$f(e) = \frac{1}{2} \Big| \sum_{v_i \in V_3} \rho(v_i) - \sum_{v_i \in V_4} \rho(v_j) \Big|.$$

References

- [1] C. Berge, Regularisable Graphs I, Discrete Math. 23(1978), 85-89.
- [2] M. Doob, Characterizations of Regular Magic Graphs, J. Combinatorial Theory (B) 25(1978), 94-104.
- [3] M. Doob, Generalizations of Magic Graphs, J. Combinatorial Theory (B) 17(1974), 205-217.
- [4] R.H. Jeurissen, Magic Graphs, a Characterization, (preprint).
- [5] S. Jezný and M. Trenkler, Characterization of Magic Graphs, Czechoslovak Math. Journal 33(1983), 435-438.
- [6] J. Mühlbacher, Magische Qudrate und ihre Verallgemeinerung: ein graphentheoretisches Problem, Graph, Data Structures, Algorithm, Hansen Verlag 1979, München.
- [7] J. Sedláček, Problem 27, in Theory of Graphs and its Applications, Proc. Symp. Smolenice 1963, 163-167.
- [8] J. Sedláček, On magic graphs, Math. Slov. 26(1976), 329-335.
- [9] B.M. Stewart, Magic Graphs, Canad. J. Math. 18(1966), 1031-1059.
- [10] L. Šándorová and M. Trenkler, On edge-labelled graphs with the prescribed sum of labelling in the incident vertices, (preprint).
- [11] M. Trenkler, Some Results on Magic Graphs, Proc. of the Third Czech. Symposium on Graph Theory, Teubner Publishing House, Leipzig 1983, 328-332.

Ľubica Šándorová P. J. Šafárik University, Jesenná 5, 041 54 Košice, Czechoslovakia Marián Trenkler P. J. Šafárik University, Jesenná 5, 041 54 Košice, Czechoslovakia